Aptitude::Logarithm
Home > Quantitative Aptitude > Logarithm > Subjective Solved Examples
Accenture (150)
Adobe (4)
Alcatel-Lucent (2)
Broadcom Ltd (33)
Aricent (7)
Amazon (9)
Wipro (378)
Tech Mahindra (432)
IBM (455)
BOA (Bank of America) (70)
Capgemini (489)
Commvault (40)
Nagarro (80)
TCS (677)
Infosys (297)
Cognizant (128)
Mu-Sigma (25)
HCL Technologies (112)
Virtusa (121)
CGI (50)
Syntel Inc. (91)
ThoughtWorks (33)
iGate (356)
Cisco (127)
Global Edge (166)
Green Valley Motor (76)
Sopra Steria (83)
Societe Generale (224)
L&T Infotech (17)
MindTree (60)
SAP Labs (27)
Hexaware Technologies (60)
TCS NQT (612)
TCS Digital (95)
TCS Ninja (80)
Huawei (50)
Wipro NLTH (175)
Reliance Jio (26)
Radisys (2)
GlobalLogic (2)
Brocade (2)
Sapient (1)
(2)
Acuvate Software (1)
Citrix (2)
Goldman Sachs (1)
Happiest Minds (1)
Deloitte (2)
Example 1 / 1
(i) \(\log_{2}128\) = ?
(ii) \(\log_{3}27\) = ?
(iii) \(\log_{7}\left(\frac{1}{343}\right)\) = ?
(iv) \(log_{100}\left(0.0001\right)\) = ?
(i) Let \(\log_{2}128\) = n
so, \(2^{n}\) = 128
Formula used: \(a^{m}\) = x \(\Leftrightarrow\) m = \(\log_{a}x\)
=> \(2^{n}\) = \(2^{7}\) or n = 7
=> \(\log_{2}128\) = 7 Ans.
(ii) Let \(\log_{3}27\) = n
so, \(3^{n}\) = 27
Formula used: \(a^{m}\) = x \(\Leftrightarrow\) m = \(\log_{a}x\)
=> \(3^{n}\) = \(3^{3}\) or n = 3
=> \(\log_{3}27\) = 3 Ans.
(iii) Let \(\log_{7}\left(\frac{1}{343}\right)\) = n
so, \(7^{n}\) = \(\frac{1}{343}\)
Formula used: \(a^{m}\) = x \(\Leftrightarrow\) m = \(\log_{a}x\)
=> \(7^{n}\) = \(\frac{1}{7^{3}}\)
=> \(7^{n}\) = \(7^{-3}\)or n = -3
=> \(\log_{7}\left(\frac{1}{343}\right)\) = -3 Ans.
(iv) Let \(log_{100}\left(0.0001\right)\) = n
so, \(100^{n}\) = 0.0001
Formula used: \(a^{m}\) = x \(\Leftrightarrow\) m = \(\log_{a}x\)
=> \(100^{n}\) = \(\frac{1}{10000}\)
=> \(100^{n}\) = \(\frac{1}{100^{2}}\)
=> \(100^{n}\) = \(100^{-2}\) or n = -2
\(log_{100}\left(0.001\right)\) = -2 Ans.
so, \(2^{n}\) = 128
Formula used: \(a^{m}\) = x \(\Leftrightarrow\) m = \(\log_{a}x\)
=> \(2^{n}\) = \(2^{7}\) or n = 7
=> \(\log_{2}128\) = 7 Ans.
(ii) Let \(\log_{3}27\) = n
so, \(3^{n}\) = 27
Formula used: \(a^{m}\) = x \(\Leftrightarrow\) m = \(\log_{a}x\)
=> \(3^{n}\) = \(3^{3}\) or n = 3
=> \(\log_{3}27\) = 3 Ans.
(iii) Let \(\log_{7}\left(\frac{1}{343}\right)\) = n
so, \(7^{n}\) = \(\frac{1}{343}\)
Formula used: \(a^{m}\) = x \(\Leftrightarrow\) m = \(\log_{a}x\)
=> \(7^{n}\) = \(\frac{1}{7^{3}}\)
=> \(7^{n}\) = \(7^{-3}\)or n = -3
=> \(\log_{7}\left(\frac{1}{343}\right)\) = -3 Ans.
(iv) Let \(log_{100}\left(0.0001\right)\) = n
so, \(100^{n}\) = 0.0001
Formula used: \(a^{m}\) = x \(\Leftrightarrow\) m = \(\log_{a}x\)
=> \(100^{n}\) = \(\frac{1}{10000}\)
=> \(100^{n}\) = \(\frac{1}{100^{2}}\)
=> \(100^{n}\) = \(100^{-2}\) or n = -2
\(log_{100}\left(0.001\right)\) = -2 Ans.
NA
NA
(i) Simplify like below:
\(\log_{2}128\) = \(\log_{2}2^{7}\) = \(7 \log_{2}2^{7}\) = 7
Formula used:
\(\log_{x}x\) = 1 AND \(\log_{x}x^m\) = \(m \log_{x}x^m\)
(ii) Simplify like below:
\(\log_{3}27\) = \(\log_{3}3^{3}\) = 3
Formula used:
\(\log_{x}x\) = 1 AND \(\log_{x}x^m\) = \(m \log_{x}x^m\)
(iii) Simplify like below:
\(\log_{7}\left(\frac{1}{343}\right)\) = \(\log_{7}\left(\frac{1}{7^{3}}\right)\)
= \(\log_{7}\left(7^{-3}\right)\) = -3
Formula used:
\(\log_{x}x\) = 1 AND \(\log_{x}x^m\) = \(m \log_{x}x^m\)
(iv) Simplify like below:
Let \(log_{100}\left(0.0001\right)\) = \(log_{100}\left(\frac{1}{10000}\right)\)
= \(log_{100}\left(\frac{1}{100^{2}}\right)\) = \(log_{100}\left(100^{-2}\right)\) = -2
Formula used:
\(\log_{x}x\) = 1 AND \(\log_{x}x^m\) = \(m \log_{x}x^m\)
\(\log_{2}128\) = \(\log_{2}2^{7}\) = \(7 \log_{2}2^{7}\) = 7
Formula used:
\(\log_{x}x\) = 1 AND \(\log_{x}x^m\) = \(m \log_{x}x^m\)
(ii) Simplify like below:
\(\log_{3}27\) = \(\log_{3}3^{3}\) = 3
Formula used:
\(\log_{x}x\) = 1 AND \(\log_{x}x^m\) = \(m \log_{x}x^m\)
(iii) Simplify like below:
\(\log_{7}\left(\frac{1}{343}\right)\) = \(\log_{7}\left(\frac{1}{7^{3}}\right)\)
= \(\log_{7}\left(7^{-3}\right)\) = -3
Formula used:
\(\log_{x}x\) = 1 AND \(\log_{x}x^m\) = \(m \log_{x}x^m\)
(iv) Simplify like below:
Let \(log_{100}\left(0.0001\right)\) = \(log_{100}\left(\frac{1}{10000}\right)\)
= \(log_{100}\left(\frac{1}{100^{2}}\right)\) = \(log_{100}\left(100^{-2}\right)\) = -2
Formula used:
\(\log_{x}x\) = 1 AND \(\log_{x}x^m\) = \(m \log_{x}x^m\)
