Take FREE!! Online Cocubes Mock Test to Crack various Companies Written Exams.
Get Off-Campus Placement Jobs Info !!!
Take 30+ FREE!! Online Arithmetic Aptitude Mock test to crack any Exams.

Quantitative Aptitude :: Height and Distance

Height and Distance Important Formulas

1. Trigonometry:
In a right angled \( \Delta \)ABC, where \( \angle \)BAC = \(\theta\),
trigonometry angle abc
\(\mathbb{i.} \ \sin \theta = \frac{Perpendicular}{Hypotenuse} = \frac{BC}{AB} \)

\(\mathbb{ii.} \ \cos \theta = \frac{Base}{Hypotenuse} = \frac{AC}{AB} \)

\(\mathbb{iii.} \ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{Perpendicular}{Base} = \frac{BC}{AC} \)

\(\mathbb{iv.} \ cosec \ \theta = \frac{1}{\sin \theta} = \frac{Hypotenuse}{Perpendicular} = \frac{AB}{BC} \)

\(\mathbb{v.} \ \sec \theta = \frac{1}{\cos \theta} = \frac{Hypotenuse}{Base} = \frac{AB}{AC} \)

\(\mathbb{vi.} \ \cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta} = \frac{cosec \ \theta}{\sec \theta} = \frac{Base}{Perpendicular} = \frac{AC}{BC} \)

Note: In school we were use to taught a simple formula to learn it, lets refresh that.
Do you remember, "Pandit Badri Prasad Hari Hari Bole".
Pandit Badri Prasad Hari Hari Bole

So taking the initials below that sin, cos and tan, we can derive their values.
cosec is simply reciprocal to sin;
sec is reciprocal to cos;
cot is reciprocal to tan;

2. Trigonometrical Identities:

\(\mathbb{i.} \ \sin^{2} \theta \ + \ \cos^{2} \theta = 1\)

\(\mathbb{ii.} \ 1 \ + \ \tan^{2} \theta = \sec^{2} \theta\)

\(\mathbb{iii.} \ 1 \ + \ \cot^{2} \theta = cosec^{2} \theta\)

3. Values of T-ratios:

T ratios values
4. Line of Sight:
A line of sight is a line drawn from the observer's eye to the point, where the object is seen by the observer.
Line of Sight
In this diagram, \( \theta \) marks the angle of elevation of the top of the object as seen from a point on the ground.

5. Horizontal Line:
Horizontal Line
The line of sight which is parallel to ground level is known as horizontal line.

6. Angle of Elevation:
angle of elevation
Suppose that from a point O a person sees an object P, which is placed above his eye level. Then, the angle of elevation is the angle between the horizontal and the line from the object to the observer's eye (line of sight).
i.e., Angle of Elevation = \( \angle \) AOP

Angle of Depression:
angle of depression
Suppose that from a point O a person sees an object P, which is placed below the level of his eye. Then, the angle between the horizontal and the observer's line of sight is the angle of depression.
i.e., Angle of Depression = \( \angle \) AOP

7. Angle Bisector Theorem:
Angle Bisector

Consider a triangle ABC as shown above. Let the angle bisector of angle A intersect side BC at a point D. Then
\(\frac{BD}{DC} = \frac{AB}{AC}\)
(Note that an angle bisector divides the angle into two angles with equal measures.
i.e., \( \angle \)BAD = \( \angle \)CAD in the above diagram)